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ABSTRACT

Bootstrap resampling methods have emerged as powerful tools for constructing inferential proce-
dures in modern statistical data analysis. This article  suggests an algoritm for building a regression 
model by bootstrap resampling method practically and gives parameter estimates of the model used 
for estimating main carcass components for Awassi lambs. Special attention is given to the estima-
tion of  regression parameters, their standard errors and confidence intervals using by bootstraping 
regression method,  and  comparing results with ordinary least squares estimates.  

As result, so bootstrap regression method generally smaller standard errors and confidence 
intervals than ordinary least squares regression that the models MC (carcass muscle) = 214.198 + 
3.808 MLL (muscle in long leg) + 4.866 MN (muscle in neck), BC (bone in carcass) = 605.904 + 
3.641 BLL (bon in long leg) + 3.634 BN (bone in neck) and  FC (fat in carcass) = -6283 + 716.8 
CW (carcass weight) from bootstrapping regression method for estimation amount of muscle, bone 
and fat in carcass of fat tail Awassi lambs are more suitable than models from ordinary least squares 
method respectively.

KEY WORDS: carcass components, Awassi lambs, resampling, bootstrap, regression

INTRODUCTION

Partial dissection or sample joint dissection may be a good and simple tool to 
determine carcass composition, but it is practically inapplicable to commertial clas-

 1 Corresponding author: e-mail: sahinler@mku.ed.tr
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sification of carcasses. It is, however, very usefull for the researchers in terms of pre-
cission and ease of application (Fisher, 1990). The precission of the method depends 
on predictors, animal species and breeds. It is, therefore,  very important to deter-
mine best predictive components of carcass for different animals. In literature there 
are many attempt to predict carcass composition of western breeds (Kempster et al., 
1982) by partial dissection methods, but not enough for fat tail Awassi lambs.  

Linear regression method is one of the tools most often used by researchers 
to fit a model for estimation.  They are interested in finding estimates of bias and 
variance of the estimator ̂β in estimation β. They are also interested in constructing 
confidence intervals for β and prediction intervals for a future observation with 
explanatory variables xj. Some major modelling assumptions such as i. the error 
term has constant variance, ii. the errors are uncorrelated, and iii. the errors are 
normally distributed are very important with the regression model. Especially as-
sumption iii. is required for hypotesis testing and interval estimation. It should be 
always considered the validity of these assumptions to be doubtful and conducted 
analysis to examine the adequacy of the model we have tentatively entertained.  
Gross violations of the assumptions may yield an unstable model in the sense that 
a different sample could lead to a totally different model with opposite conclusions 
(Montgomery and Peck, 1992). There are several methods useful  for diagnosing 
and treating violations of the regression assumptions. Robust estimation strategies 
and residual diagnostics have improved the usefulness of these techniques. How-
ever, they may not provided these assumptions by using these methods. In these 
cases, the bootstrap adds another dimension to the subject. 

In this study it was constituted an algoritm of bootstrapping in regression 
analysis and estimated parameters of the models which will used for estimating 
main carcass components muscle, bone and fat. The results were compared with 
ordinary least squares regression.

MATERIAL AND METHODS

Material

Sixty fat-tail Awassi male lamb carcasses obtained in different feeding 
experiment in Animal Science Department, Faculty of Agriculture, Univer-
sity of Çukurova (Turkey) were used. The lambs were fed ad libitum with 
total mixed rations (90% concetrate and 10% lucerne straw with 1-2 chop 
length) containing 2.25-2.50 Mcal ME/kg and 140-180 g CP/kg. Fattening pe-
riod was 56 days and initial liveweights of the lambs varied from 22 to 26 kg in
the studies. The carcass dissection was performed according to Colomer-Rocher et 
al. (1987). According to the method, amount of carcass tissue were calculated from 
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six sections of carcass, long leg, shoulder, neck, flank, the first five ribs and remain-
ing ribs by summing up the same carcass components from left side of the carcass.

Daily gain, weights of kidney and channel fat, omental fat, fat tail and bone, 
muscle, intermuscular fat, subcutaneous fat, total fat in each joint together with 
eye muscle measurements (width of muscle, depth of muscle, depth of subcutane-
ous fat over muscle and depth of subcutaneous fat over the ventral edge of muscle 
serratus dorsalis) were used as variables to chose best predictors of carcass bone, 
muscle, fat.

Methods

The usual linear regression model is

   Y = Xβ + ε                                     (1)

where Y = (y1,y2,...yn)’ denotes the nx1 vector of the response, and nxk matrix of 
regressors is X = (x1,x2,...xn)’, where the kx1 vector xi denotes the regressors for 
the ith observation where k is the number independent variables, εi is an nx1 vector 
of uncorrelated error terms having mean 0 and variance σ2 (Cook, 1977; Draper 
and John,1980, 1981). The px1 vector β holds the unknown parameters, for which 
the ordinary least squares(OLS) estimator is 

                   (2)

where p is the number of parameters. It follows that . 
Because σ2 is not usually known, Var(β̂) is estimated by

            (3)

where s2 is the unbiased variance estimator provided by the residuals ei
= , 

I=1,2,...,N. (Atkinson, 1981; Catterjee and Hadi, 1986). 

   (4)

Bootstrapping is a broadly applicable, nonparametric approach to statistical 
inference that substitutes intensive computation for more traditional distributional 
assumptions and asymptotic results. Bootstrap aims to draw much of subsamples 
from sample for obtaining sampling distribution of estimator and to use the dis-
tribution for obtaining the better estimator of the population parameters (Mooney 
and Duval, 1993). Here, the bootstrap method bases similarity between sample 
and population. In addition, while the ordinary sampling techniques use some as-
sumptions related to the form of the estimator distribution, bootstrap resampling 
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method needn’t these assumptions because of thinking sample data as population. 
That the bootstrapping exploits  the central analogy is the population is to the 
sample as the sample is to the bootstrap samples. Concequently,

• the bootstrap observations are analogous to the original observations
• the bootstrap mean is analogous to the mean of the original sample
•  the mean of the original sample is analogous to the unknown population 

mean
•  the distribution of the bootstrap sample means is analogous to the unknown 

sampling distribution of means for samples of size n drawn from the original 
population.

The bootstrap can be used to derive accurate standart errors, confidence inter-
vals, and hypothesis tests for most statistics. It can be also used the bootstrap resa-
mpling techniqes for obtaining the regression parameter estimates, their standart 
errors and confidance intervals, and usually gives better estimates then classical 
methods needn’t above assumptions. 

A finite total of nn possible bootstrap samples exist. If it was computed the pa-
rameter estimates for each of these nn samples, it would obtain the true bootstrap 
estimates of parameters but such extreme computation is wasteful and unneces-
sary in this case (Stine, 1990). The number of bootstrap replications B depends 
on the application and size of sample. It was suggested the bootstrap replications 
sufficient to be B   =~    100 for standard error estimates, for confidence interval esti-
mates B   =~    1000, for standard deviation estimate 50 ≤ B ≤100 (Efron, 1990; Leger 
et al., 1992). 

 It has been pointed in literature two different bootstrap resampling methods 
can be used in regression analysis. The coise of either methods depends upon 
the regressors are fixed or random. If  the regressors are fixed, the bootstrap uses 
resampling of the error term. If the regressors are random, the bootstrap uses  re-
sampling of pairs of observations (Stine, 1990; Shao, 1996). 

Here, it was given an algoritm for bootstrapping regression models based on 
the resampling observations. This approach is usually applied when the regression 
models built from data have regressors that are as random as the response. Let the 
(k+1) × 1 vector  the values associated with ith observation. In this 
case, the set of observations are the vectors (w1,w2,...,wn). The steps of bootstrap-
ping with  random regressor algoritm are:
a.  draw n sized sample from population randomly .
b. draw a n sized  bootstrap sample (w1

*(b), w2
*(b),..., wn

*(b)) with replacement  from 
the observations giving 1/n probability each wi values (Wu, 1986) and label the
elements of each vector , where j = 1,2,...k, i = 1,2,...n. 
From these form the vector  and the matrix 
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c.   calculate the OLS coefficients from the bootstrap sample (Wu, 1986): 

    (5)

d.  repeat steps (b) and (c) for b=1,2,...,B, where B is the number of repetition.
e. obtain the probability distribution (F(β̂

*
)) of bootstrap estimates β̂*(1), β̂*(2),..., β̂*(B) 

and use the F(β̂
*
) to estimate regression coefficients, variances and confidence 

intervals as follows. The bootstrap estimate of regression coefficient of βj is the 
mean of the distribution (Fox,1997),   

  (6)

f.  thus, the bootstrap regression equation is 

      (7)

where β̂* is unbiased estimator of β (Freedman, 1981; Shao and Tu, 1995).
An illustrative study of bootstrap algorithm steps for estimation of β given 

above is shown in Table 1 by using muscle in carcass data. The variance-cov-
ariance matrix of β̂* from the probability distribution (F(β̂

*
)) are calculated by 

(Liu,1988; Stine, 1990) 

    (8)

TABLE 1
An illustrative study for bootstrap estimation (β̂*) steps of β for muscle in carcass model in Equa-
tion 12

b Variables w1
*(b), w2

*(b), w3
*(b), W60

*(b),

1
Muscle in carcass, g (Y) 6982 7222 6168 7374

198.255 3.622 4.951Muscle in long leg, g (X1) 1370 1358  1408 1510
Muscle in neck, g (X2)  322 298  258 338

2
Muscle in carcass, g (Y) 9458 8136  8128 7556

265.986 4.127 3.666Muscle in long leg, g (X1) 1754 1529  1546 1452
Muscle in neck, g (X2)  472 403 362 271

10000
Muscle in carcass, g (Y) 7756 7242 8650 6848

231.632 2.548 4.079Muscle in long leg, g (X1) 1452 1430 1664 1332
Muscle in neck, g (X2) 330 348 418 312

214.198 3.808 4.866 

β̂0 β̂1 β̂2

β

β β β

β

β β β β β

β β
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The bootstrap confidence interval of  β̂*
j by normal approach is obtained by

                     (9)

where  β̂*
j  is the j th bootstrap estimator, Se (β̂

*
j ) is the standard error of the j th 

Bootstrap estimator, and tn-p,α/2 is t values with n-p degrees of freedom and α/2 
significant level (Diciccio and Tibshirani, 1987).

A nonparametric confidence interval for β̂* named percentile interval can be 
constructed from the quantiles of the bootstrap sampling distribution of  β̂*(b). The 
95 % percentile interval is 

      < <                     (10)

where  β̂*(b) is the ordered bootstrap estimates of regression coefficient from Equa-
tion 5, lower = 0.025 B, and upper = 0.975 B.

The skewness of the distribution (F(β̂
*)) of the replicates from step (e) for the 

β̂j
*(b) can be determined by examining the shape of distribution plots of the β̂j

*(b). 
These plots show that a histogram of the replicates with an overlaid smooth den-
sity estimate. A solid vertical is plotted at the observed parameter value, and a 
dashed vertical line at the mean of the replicates. 

The statistical packages, Excel, S-Plus for windows and SPSS  for Windows, 
were used for the statistical  analysis of  these data.

RESULTS   

The amount of lean, bone and fat tissue in the lamb carcass were related to 
some other carcass components and measurements. Non-significant variables 
were identified by inspection variable selection statistics and omitted (Draper and 
Smith, 1981; Catterjee and Teebagy, 1990). For this purpose in each stage outliers, 
leverage points and influential points were identified and after checking for some 
mistakes as entry of data and measurement, the outliers were omitted (Belsley 
et al., 1980; Şahinler, 2000). At the same time the models were controlled with 
regard to the assumptions of the Ordinary Least Squares method, autocorrelation 
and collinearity (Willan and Watts, 1978; Montgomery and Peck, 1992; Şahinler 
and Bek, 2002). 

The parameter estimations, standard error and confidence intervals of the parame-
ter estimations and some related descriptive statistics from ordinary least squares and 
bootstrapping regression methods for estimation of muscle in carcass, bone in carcass 
and fat in carcass are given in Table 2. For checking heterocedasticity of error term 

β β β β β

β β β



728 METHOD FOR ESTIMATION CARCASS COMPONENTS  729ŞAHINLER S., GÖRGÜLÜ M.
TA

B
LE

 2
O

rd
in

ar
y 

le
as

t s
qu

ar
es

 a
nd

 B
oo

tst
ra

p 
(B

 =
 1

0 
00

0)
 p

ar
am

et
er

 a
nd

 re
la

te
d 

de
sc

rip
tiv

e 
st

at
is

tic
s f

or
 e

st
im

at
io

n 
of

 so
m

e 
m

ai
n 

ca
rc

as
s c

om
po

ne
nt

s

M
ai

n 
co

m
po

ne
nt

s
Va

ria
bl

es
O

rd
in

ar
y 

Le
as

t S
qu

ar
es

 R
eg

re
ss

io
n

S.
E.

(    β̂ j
)

95
 %

 C
on

fid
en

ce
 

In
te

rv
al

 fo
r  

β̂
t

si
gn

V
IF

D
ur

bi
n 

W
at

so
n

M
us

cl
e 

in
 

ca
rc

as
s (

M
C

)

In
te

rc
ep

t
20

0.
04

3
43

7.
87

7
-6

76
.7

9 
  -

 1
07

6.
88

  0
.4

57
0.

65
0

--
-

1.
78

7
M

LL
, g

  3
.8

3
   

0.
37

8
 3

.0
73

 - 
4.

58
8

10
.1

29
0.

00
0

1.
86

M
N

, g
 4

.8
1

   
0.

87
8

 3
.0

51
 - 

6.
56

9
  5

.4
76

0.
00

0
1.

88
N

 =
 6

0,
 s2 

= 
62

01
3.

8,
 S

SE
 =

 3
53

47
86

.5
, F

 =
 1

95
.3

B
on

e 
in

 
ca

rc
as

s (
B

C
)

In
te

rc
ep

t
60

6.
41

8
14

2.
71

4
 3

20
.6

4 
- 8

92
.2

0
  4

.2
49

0.
00

0
--

-
2.

20
4

B
LL

, g
   

  3
.6

47
 

   
   

0.
29

8
3.

05
0 

- 4
.2

43
12

.2
45

0.
00

0
1.

24
B

N
, g

   
  3

.6
13

   
   

0.
45

8
 2

.6
96

 - 
4.

53
1

  7
.8

85
0.

00
0

1.
24

N
 =

 6
0,

 s2 
= 

13
04

0,
 S

SE
 =

 7
43

27
7.

3,
 F

 =
 1

84
.6

Fa
t  

in
 c

ar
ca

ss
 

(F
C

)

In
te

rc
ep

t
-6

29
7

79
8.

42
3

 -7
89

5.
5 

- (
-4

69
9.

1)
-7

.8
87

0.
00

0
--

-
1.

69
5

C
W

, k
g

   
71

6.
75

1
   

 4
2.

27
1

  6
32

.1
36

 - 
80

1.
36

5
16

.9
56

0.
00

0
--

-
N

 =
 6

0,
 s2 

= 
44

27
29

, S
SE

 =
 2

60
00

00
0,

 F
 =

 2
87

.5
07

M
ai

n 
co

m
po

ne
nt

s
Va

ria
bl

es
B

oo
ts

tra
p 

 R
eg

re
ss

io
n

 β̂
*

S.
E.

( β̂
* )

95
%

 C
on

fid
en

ce
 

In
te

rv
al

s f
or

  β̂
*

95
 %

 P
er

ce
nt

ile
 In

te
rv

al
s 

fo
r  

β̂*

M
us

cl
e 

in
 

ca
rc

as
s (

M
C

)

In
te

rc
ep

t
  2

14
.1

98
39

8.
99

6
   

-5
67

.8
3 

- 9
96

.2
3

-6
65

.2
8 

- 9
25

.6
5

M
LL

, g
   

   
3.

80
8

   
   

0.
36

73
   

   
3.

08
8 

- 4
.5

28
3.

13
 - 

4.
56

M
N

, g
   

  4
.8

66
   

   
1.

11
30

   
 2

.6
84

5 
- 7

.0
47

5
2.

74
 - 

7.
09

B
on

e 
in

 
ca

rc
as

s (
B

C
)

In
te

rc
ep

t
  6

05
.9

04
12

0.
90

4
   

 3
68

.9
3 

- 8
42

.8
8

37
0.

88
 - 

85
1.

52
B

LL
 , 

g
   

   
3.

64
1

   
  0

.2
70

   
   

  3
.1

1 
- 4

.1
7

3.
10

 - 
4.

17
B

N
, g

   
  3

.6
34

   
  0

.4
41

   
   

  2
.7

7 
- 4

.5
0

2.
69

 - 
4.

41

Fa
t  

in
 

ca
rc

as
s (

FC
)

In
te

rc
ep

t
  -

62
83

   
 7

98
.2

 -7
87

9.
4 

- (
-4

68
6.

6)
   

-7
87

8.
7 

- (
-4

70
2.

1)
C

W
, k

g
  7

16
.8

43
.9

1
  6

28
.9

8 
- 8

04
.6

2
62

9.
08

 - 
80

3.
72

β̂



730 METHOD FOR ESTIMATION CARCASS COMPONENTS  731ŞAHINLER S., GÖRGÜLÜ M.

for model, the studentized deleted residual versus Xj for (a) muscle in carcass (MC), 
(b) bone in carcass (BC) and (c) fat in carcass (FC) and given in Figure 1. Scatter plots 
and regression fit line of  (a) the MC vs muscle in long leg (MLL) and muscle in neck 
(MN), (b) the BC vs bone in long leg (BLL) and bone in neck (BN), and (c) the FC 
vs carcass weight (CW) were given in Figure 2. For examining the skewness of the 
distribution  (F(β̂

*
)) of the replicates (B = 10 000), the distribution plots of the  β̂j

*(b)  
(F(β̂

*
)) from Equation 5 are given in Figure 3, 4 and 5. The plots in Figure 3, 4 and 

5 show that there are no skewness on the shape of distribution of the replicates for 
all  β̂j

*(b). This means that the distributions of the  β̂j
*(b)  for all regression models 

obtained from bootstrapping are normal. 

Muscle in carcass

After selecting the independent variables by using stepwise method, muscle 
in long leg (MLL) and muscle in neck (MN) variables entered the model, and the 
ordinary least squares fit the data is:

MC = 200.043 + 3.83 MLL + 4.81 MN        (11)

According to the results in Table 2, the regression in Equation 11 is significant 
(P<0.01) and all of the regression coefficients ̂β0, ̂β1  and ̂β2  are significant (P<0.01). 
The standard errors of the ̂β0, ̂β1  and ̂β2  are 437.877, 0.378, and confidence intervals 
are (-676.79 - 1076.88), (3.073 - 4.588) and (3.051 - 6.569), respectively. Durbin 
Watson test statistic (d) is calculated as autocorrelation diagnostic and found as 
1.787. So d = 1.787 grater then dU = 1.65 that there is no autocorrelation problem 
in error term. VIF statistics are calculated as collinearity diagnostic and found as 
VIFMLL = 1.875 and VIFMN = 1.875. Thus, so both of VIFj (= 1.875) < 10, that there 
is no collinearity problem between MLL and MN variables (Table 2). The studen-
tized deleted residual versus XMN  for checking heterocedasticity  of error term for 
model in Equation 11 and it was seen that there is no heterocedasticy problem in 
muscle in carcass data (Figure 1a). Thus, the model in Equation 11 could be used 
for estimation amount of muscle in carcass of Awassi lambs. The scatter plot of 
the observations and regression fit line of Equation 11 are given in Figure 2a.

The bootstrap regression coefficient obtained from Equation 6 and the boot-
strap regression equation for variables in Equation 11 is fitted as :

  MC= 214.198 + 3.808 MLL + 4.866 MN    (12)

The bootstrap standard errors of the  β̂*
0, β̂

*
1    and β̂*

2    from Equation 8 are 398.996, 
0.3673 and 1.1130 respectively. The bootstrap confidence and percentile intervals of 
the   β̂*

0, β̂
*
1    and β̂*

2    from Equation 8 and 9 are (-567.83 - 996.23),  (3.088 - 4.528),  
(2.6845 - 7.0475) and (-665.28 - 925.65), (3.13 - 4.56), (2.74 - 7.09), respectively (Ta-
ble 2). According to these results, bootstrap regression method generally smaller 
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Figure 1. Studentized deleted residual plots (a) muscle in carcass, (b) bone in carcass and (c) fat in 
carcass

(a)

(b)

(c)
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Figure 2. Scatter plots and regression fit line of  (a) the MC vs MLL and MN, (b) the BC vs BLL 
and BN, and (c) the FC vs CW

(a)

(b)

(c)
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Figure 3. Estimated distribution of  (a)  β̂*
0 , (b)  β̂*

1     and (c)  β̂*
2     (muscle)

Figure 4. Estimated distribution of  (a)  β̂*
0 , (b)  β̂*

1     and (c)  β̂*
2    (bone)

Figure 5. Estimated distribution of  (a)  β̂*
0  and (b)  β̂*

1     (fat)

β̂1 
(a)

*(b) β̂1 
(b)

*(b)
β̂2 
(c)

*(b)

Density Density Density

Density Density Density

β̂1 
(a)

*(b) β̂1 
(b)

*(b)
β̂2 
(c)

*(b)

Density Density

β̂1 
(a)

*(b) β̂1 
(b)

*(b)
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standard errors and confidence intervals than ordinary least squares regression. 
Therefore, the model in Equation 12 is more suitable than model in Equation 11 
for estimation amount of muscle in carcass of Awassi lambs.

Bone in carcass 

Bone in long leg (BLL) and bone in neck (BN) variables entered to the re-
gression model among the all of the independent variables and the ordinary least 
squares equation for bone in carcass (BC) is fitted as:

     BC = 606.418 + 3.647 BLL + 3.613 BN                  (13)

The regression in Equation 13 is significant (P<0.01), R2=0.866 and all of the 
regression coefficients  β̂0, β̂1  and β̂2  are significant (P<0.01). The standard errors 
of the  β̂0, β̂1  and β̂2  are 142.714, 0.298 and 0.458, and 95 % confidence intervals are 
(320.64 - 892.20), (3.050 - 4.243) and (2.696 - 4.531), respectively. According to the 
Durbin Watson test statistic (d = 2.204) and VIF statistics (VIFBLL=1.24 and VIFBN 
= 1.24), neither autocorrelation problem in error term nor collinearity problem 
between BLL and BN variables are not exist (Table 2). Heterocedasticity of error 
term for bone in carcass data is not determined from the studentized deleted re-
sidual plot versus XBLL  (Figure 1b). Thus, the model in Equation 13 could be used 
for estimation amount of bone in carcass of Awassi lambs. The scatter plot of the 
observations and regression fit line of Equation 13 are given in Figure 2b.

The bootstrap regression equation for variables in Equation 13 is:

                   BC = 605.904 + 3.641 BLL + 3.634 BN                                      (14)

The bootstrap standard errors of the  β̂*
0, β̂

*
1    and β̂*

2    are 120.904, 0.270 and 0.441 
respectively. The bootstrap confidence and percentile intervals of the   β̂*

0, β̂
*
1    and 

β̂*
2     are (368.93 - 842.88), (3.11 - 4.17), (2.77 - 4.50) and (370.88 - 851.52), (3.10 

- 4.17), (2.69 - 4.41), respectively (Table 2). According to these results, bootstrap 
regression method generally smaller standard errors and confidence intervals than 
ordinary least squares regression. Therefore, the model in Equation 14 is more 
suitable than model in Equation 13 for estimation amount of bone in carcass of 
Awassi lambs.

Fat in carcass 

The fitted ordinary least squares equation for fat in carcass:

   FC = -6297 + 716.751 CW                                (15)

where FC is fat in carcass(g) and CW is carcass weight (kg). For Equation in 15, the 
regression and coefficients are significant (P<0.01). And R2 = 0.832. The standard 
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errors and confidence intervals of the  β̂*
0, and  β̂*

1     are  -6297, 716.751 and (-7895.5 
- (-4699.1)), (632.136 - 801.365), respectively.  According   to   the Durbin   Watson    
test   statistic (d = 1.695) (Table 2) and studentized deleted residual plot versus XCW  
(Figure 1c), neither autocorrelation problem in error term nor heterocedasticity of 
error term for fat in carcass data are not determined. Thus, the model in Equation 15 
could be used for estimation amount of fat in carcass of Awassi lambs. The scatter 
plot of the observations and regression fit line of Equation 15 are given in Figure 2c.

The bootstrap regression equation for variables in Equation 15 is:

   FC= -6283 + 716.8 CW                    (16)

The bootstrap standard errors of the  ̂β*
0 , and  ̂β*

1     are 798.2 and 40.91, respectively. 
The bootstrap confidence and percentile intervals of the  β̂*

0   , and  β̂*
1     are (-7879.4 

- (-4686.6)), (634.98 - 798.62) and (-7878.7 - (-4702.1)), (634.08 - 797.72), respec-
tively (Table 2). According to these results, bootstrap regression method generally 
smaller standard errors and confidence intervals than ordinary least squares regres-
sion. Therefore, the model in Equation 16 is more suitable than model in Equation 
15 for estimation amount of fat in carcass of Awassi lambs.

DISCUSSION

The most important advantages of the bootstrap regression method is to give 
smaller standard error and to need smaller sample than ordinary least squares meth-
od. On the other hand, its practical performance is frequently much better but this is 
not guaranteed (Hawkins and Olive, 2002). For this reason, it is a mistake to hope 
that bootstrap regression method always gives confident results. The confidence de-
pends on the structure of the data and distribution function. Moreover, application of 
resampling methods depends on development of computer technologies. 

If the results were examined in Table 2 , it was seen that there is no differ-
ence between the regression coefficients obtained from ordinary least squares and 
bootstrap regression method (P>0.05), except for regression coefficient ( β̂2   =1.81 
and  β̂*

2   = 4.866) for muscle in carcass. Nevertheless, bootstrap regression method 
gives regression coefficients which have generally smaller standard errors and 
confidence intervals than ordinary least squares regression method. Similar result 
was reported by Efron (1979). But, the bootstrap regression method always might 
not give smaller standard error than ordinary least squares method as in regression 
coefficient (S.E.( β̂1 ) = 42.271 and S.E.( β̂*

1     ) = 43.91) for fat in carcass model. Fox 
(1997) also reported similar results. Therefore, the model in Equations 12, 14 and 
16 are more suitable than model in Equation 11, 13 and 15 for estimation amount 
of muscle, bone and fat in carcass of Awassi lambs, respectively.
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CONCLUSIONS

As a result, it might be considered as the most diagnostic parts of the fat 
tail Awassi lambs carcass for muscle and bone in carcass are muscle and bone 
amounts in long leg and neck.  The carcass weight is the most diagnostic parts of 
the fat tail Awassi lambs carcass for fat in carcass.  
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STRESZCZENIE

Szacowanie głównych składników tuszy przy użyciu metody regresji Bootstrapp

Metody regresji Bootstrapp okazały się przydatnym narzędziem stosowanym do konstruowania 
procedur wnioskowania statystycznego stosowanego w nowoczesnej analizie danych. W pracy za-
prezentowano zastosowanie algorytmu do budowania modelu regresji przy użyciu tzw. powtórnego 
próbkowania Bootstrapp oraz estymatory parametrów modelu użytego do szacowania głównych 
składników tuszy jagniąt Awassi. Szczególny nacisk położono na szacowanie parametrów regresji, 
ich błędów standardowych oraz przedziałów ufności.Uzyskane wyniki  przy użyciu metody regresji 
Bootstrapp porównano z estymatorami metody uogólnionych najmniejszych kwadratów. 

Jak wykazano, estymatory współczynników regresji Bootsrapp mają generalnie mniejsze błędy 
standardowe i krótsze przedziały ufności niż estymatory regresji uogólnionych najmniejszych 
kwadratów, stąd modele dla MC (umięśnienie tuszy) = 214.198 + 3.808 MLL (umięśnienie udźca) 
+ 4.866 MN (umięśnienie szyi), BC (tkanka kostna tuszy) = 605.904 + 3.641 BLL (tkanka kostna 
udźca) + 3.634 BN (tkanka kostna szyi) oraz FC (tkanka tłuszczowa tuszy) = 6283 + 716.8 CW 
(waga tuszy) oszacowane metodą regresji Bootstrapp są bardziej odpowiednie do oceny umięśnienia, 
zawartości tkanki kostnej i tłuszczowej w tuszy tłustoogoniastych owiec rasy Awassi niż modele 
najmniejszych kwadratów.  




